a(a(x1)) → b(b(b(x1)))
a(x1) → c(d(x1))
b(b(x1)) → c(c(c(x1)))
c(c(x1)) → d(d(d(x1)))
e(d(x1)) → a(b(c(d(e(x1)))))
b(x1) → d(d(x1))
e(c(x1)) → b(a(a(e(x1))))
c(d(d(x1))) → a(x1)
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
a(a(x1)) → b(b(b(x1)))
a(x1) → c(d(x1))
b(b(x1)) → c(c(c(x1)))
c(c(x1)) → d(d(d(x1)))
e(d(x1)) → a(b(c(d(e(x1)))))
b(x1) → d(d(x1))
e(c(x1)) → b(a(a(e(x1))))
c(d(d(x1))) → a(x1)
a(a(x1)) → b(b(b(x1)))
a(x1) → c(d(x1))
b(b(x1)) → c(c(c(x1)))
c(c(x1)) → d(d(d(x1)))
e(d(x1)) → a(b(c(d(e(x1)))))
b(x1) → d(d(x1))
e(c(x1)) → b(a(a(e(x1))))
c(d(d(x1))) → a(x1)
a(a(x)) → b(b(b(x)))
a(x) → d(c(x))
b(b(x)) → c(c(c(x)))
c(c(x)) → d(d(d(x)))
d(e(x)) → e(d(c(b(a(x)))))
b(x) → d(d(x))
c(e(x)) → e(a(a(b(x))))
d(d(c(x))) → a(x)
↳ QTRS
↳ QTRS Reverse
↳ QTRS
↳ QTRS Reverse
↳ DependencyPairsProof
a(a(x)) → b(b(b(x)))
a(x) → d(c(x))
b(b(x)) → c(c(c(x)))
c(c(x)) → d(d(d(x)))
d(e(x)) → e(d(c(b(a(x)))))
b(x) → d(d(x))
c(e(x)) → e(a(a(b(x))))
d(d(c(x))) → a(x)
a(a(x1)) → b(b(b(x1)))
a(x1) → c(d(x1))
b(b(x1)) → c(c(c(x1)))
c(c(x1)) → d(d(d(x1)))
e(d(x1)) → a(b(c(d(e(x1)))))
b(x1) → d(d(x1))
e(c(x1)) → b(a(a(e(x1))))
c(d(d(x1))) → a(x1)
a(a(x)) → b(b(b(x)))
a(x) → d(c(x))
b(b(x)) → c(c(c(x)))
c(c(x)) → d(d(d(x)))
d(e(x)) → e(d(c(b(a(x)))))
b(x) → d(d(x))
c(e(x)) → e(a(a(b(x))))
d(d(c(x))) → a(x)
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ QTRS
↳ DependencyPairsProof
a(a(x)) → b(b(b(x)))
a(x) → d(c(x))
b(b(x)) → c(c(c(x)))
c(c(x)) → d(d(d(x)))
d(e(x)) → e(d(c(b(a(x)))))
b(x) → d(d(x))
c(e(x)) → e(a(a(b(x))))
d(d(c(x))) → a(x)
E(c(x1)) → A(a(e(x1)))
E(c(x1)) → E(x1)
E(d(x1)) → A(b(c(d(e(x1)))))
E(d(x1)) → C(d(e(x1)))
E(c(x1)) → B(a(a(e(x1))))
A(a(x1)) → B(x1)
C(d(d(x1))) → A(x1)
B(b(x1)) → C(c(x1))
A(a(x1)) → B(b(x1))
A(x1) → C(d(x1))
E(c(x1)) → A(e(x1))
A(a(x1)) → B(b(b(x1)))
B(b(x1)) → C(c(c(x1)))
B(b(x1)) → C(x1)
E(d(x1)) → B(c(d(e(x1))))
E(d(x1)) → E(x1)
a(a(x1)) → b(b(b(x1)))
a(x1) → c(d(x1))
b(b(x1)) → c(c(c(x1)))
c(c(x1)) → d(d(d(x1)))
e(d(x1)) → a(b(c(d(e(x1)))))
b(x1) → d(d(x1))
e(c(x1)) → b(a(a(e(x1))))
c(d(d(x1))) → a(x1)
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
E(c(x1)) → A(a(e(x1)))
E(c(x1)) → E(x1)
E(d(x1)) → A(b(c(d(e(x1)))))
E(d(x1)) → C(d(e(x1)))
E(c(x1)) → B(a(a(e(x1))))
A(a(x1)) → B(x1)
C(d(d(x1))) → A(x1)
B(b(x1)) → C(c(x1))
A(a(x1)) → B(b(x1))
A(x1) → C(d(x1))
E(c(x1)) → A(e(x1))
A(a(x1)) → B(b(b(x1)))
B(b(x1)) → C(c(c(x1)))
B(b(x1)) → C(x1)
E(d(x1)) → B(c(d(e(x1))))
E(d(x1)) → E(x1)
a(a(x1)) → b(b(b(x1)))
a(x1) → c(d(x1))
b(b(x1)) → c(c(c(x1)))
c(c(x1)) → d(d(d(x1)))
e(d(x1)) → a(b(c(d(e(x1)))))
b(x1) → d(d(x1))
e(c(x1)) → b(a(a(e(x1))))
c(d(d(x1))) → a(x1)
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
B(b(x1)) → C(c(x1))
C(d(d(x1))) → A(x1)
A(a(x1)) → B(b(x1))
A(x1) → C(d(x1))
A(a(x1)) → B(b(b(x1)))
B(b(x1)) → C(c(c(x1)))
B(b(x1)) → C(x1)
A(a(x1)) → B(x1)
a(a(x1)) → b(b(b(x1)))
a(x1) → c(d(x1))
b(b(x1)) → c(c(c(x1)))
c(c(x1)) → d(d(d(x1)))
e(d(x1)) → a(b(c(d(e(x1)))))
b(x1) → d(d(x1))
e(c(x1)) → b(a(a(e(x1))))
c(d(d(x1))) → a(x1)
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPOrderProof
↳ UsableRulesProof
↳ QDP
C(d(d(x1))) → A(x1)
B(b(x1)) → C(c(x1))
A(a(x1)) → B(b(x1))
A(x1) → C(d(x1))
B(b(x1)) → C(c(c(x1)))
A(a(x1)) → B(b(b(x1)))
B(b(x1)) → C(x1)
A(a(x1)) → B(x1)
c(c(x1)) → d(d(d(x1)))
b(b(x1)) → c(c(c(x1)))
a(a(x1)) → b(b(b(x1)))
c(d(d(x1))) → a(x1)
a(x1) → c(d(x1))
b(x1) → d(d(x1))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
C(d(d(x1))) → A(x1)
B(b(x1)) → C(c(x1))
A(a(x1)) → B(b(x1))
A(x1) → C(d(x1))
B(b(x1)) → C(x1)
A(a(x1)) → B(x1)
Used ordering: Polynomial interpretation [25]:
B(b(x1)) → C(c(c(x1)))
A(a(x1)) → B(b(b(x1)))
POL(A(x1)) = 8 + x1
POL(B(x1)) = 4 + x1
POL(C(x1)) = 1 + x1
POL(a(x1)) = 14 + x1
POL(b(x1)) = 9 + x1
POL(c(x1)) = 6 + x1
POL(d(x1)) = 4 + x1
c(c(x1)) → d(d(d(x1)))
a(a(x1)) → b(b(b(x1)))
b(b(x1)) → c(c(c(x1)))
c(d(d(x1))) → a(x1)
a(x1) → c(d(x1))
b(x1) → d(d(x1))
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ UsableRulesProof
↳ QDP
A(a(x1)) → B(b(b(x1)))
B(b(x1)) → C(c(c(x1)))
c(c(x1)) → d(d(d(x1)))
b(b(x1)) → c(c(c(x1)))
a(a(x1)) → b(b(b(x1)))
c(d(d(x1))) → a(x1)
a(x1) → c(d(x1))
b(x1) → d(d(x1))
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ QDP
C(d(d(x1))) → A(x1)
B(b(x1)) → C(c(x1))
A(a(x1)) → B(b(x1))
A(x1) → C(d(x1))
B(b(x1)) → C(c(c(x1)))
A(a(x1)) → B(b(b(x1)))
B(b(x1)) → C(x1)
A(a(x1)) → B(x1)
c(c(x1)) → d(d(d(x1)))
b(b(x1)) → c(c(c(x1)))
a(a(x1)) → b(b(b(x1)))
c(d(d(x1))) → a(x1)
a(x1) → c(d(x1))
b(x1) → d(d(x1))
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
E(c(x1)) → E(x1)
E(d(x1)) → E(x1)
a(a(x1)) → b(b(b(x1)))
a(x1) → c(d(x1))
b(b(x1)) → c(c(c(x1)))
c(c(x1)) → d(d(d(x1)))
e(d(x1)) → a(b(c(d(e(x1)))))
b(x1) → d(d(x1))
e(c(x1)) → b(a(a(e(x1))))
c(d(d(x1))) → a(x1)
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ UsableRulesProof
E(c(x1)) → E(x1)
E(d(x1)) → E(x1)
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
E(c(x1)) → E(x1)
E(d(x1)) → E(x1)
No rules are removed from R.
E(c(x1)) → E(x1)
E(d(x1)) → E(x1)
POL(E(x1)) = 2·x1
POL(c(x1)) = 2·x1
POL(d(x1)) = 2·x1
↳ QTRS
↳ QTRS Reverse
↳ QTRS Reverse
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ UsableRulesProof
↳ QDP
↳ UsableRulesReductionPairsProof
↳ QDP
↳ PisEmptyProof